cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A116379 Number of ternary rooted identity (distinct subtrees) trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 245, 542, 1205, 2707, 6113, 13907, 31780, 73010, 168399, 389991, 906231, 2112742, 4939689, 11580640, 27216387, 64110091, 151334814, 357938832, 848153045, 2013190671, 4786210412, 11396004660, 27172368314, 64875527649
Offset: 1

Views

Author

Karen A. Yeats, Feb 06 2006

Keywords

Comments

It is not known if these trees have the asymptotic form C rho^{-n} n^{-3/2}, whereas the identity binary trees, A063895, do, see the Jason P. Bell et al. reference.

Crossrefs

Programs

  • C
    #include  using namespace GiNaC; int main(){ int i, order = 40; symbol x("x"); ex T = x; for (i=0; i
    				
  • Maple
    A:= proc(n) option remember; local T; if n<=1 then x else T:= unapply(A(n-1), x); convert(series(x* (1+T(x)+ T(x)^2/2- T(x^2)/2+ T(x)^3/6- T(x)*T(x^2)/2+ T(x^3)/3), x, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=1..40);  # Alois P. Heinz, Aug 22 2008
  • Mathematica
    A[n_] := A[n] = If[n <= 1, x, T[y_] = A[n-1] /. x -> y; Normal[Series[y*(1+T[y]+T[y]^2/2-T[y^2]/2+T[y]^3/6-T[y]*T[y^2]/2+T[y^3]/3), {y, 0, n+1}]] /. y -> x] ; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 13 2014, after Maple *)

Formula

G.f. satisfies: A(x) = x(1+A(x)+A(x)^2/2-A(x^2)/2+A(x)^3/6-A(x)A(x^2)/2+A(x^3)/3), that is A(x) = x(1+Set_{<=3}(A)(x)).

A245749 Number of identity trees with n nodes where the maximal outdegree (branching factor) equals 4.

Original entry on oeis.org

2, 6, 21, 63, 185, 512, 1403, 3750, 9928, 25969, 67462, 174039, 446884, 1142457, 2911078, 7396049, 18746761, 47420345, 119746936, 301941284, 760387426, 1912814031, 4807298905, 12071798139, 30292240853, 75965728619, 190398931985, 476980247827, 1194401725174
Offset: 11

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 31 2014

Keywords

Crossrefs

Column k=4 of A244523.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b(i-1$2, k$2), j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 4$2) -b(n-1$2, 3$2):
    seq(a(n), n=11..60);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k], j]*b[n - i*j, i-1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] :=  b[n-1, n-1, 4, 4] - b[n-1, n-1, 3, 3];
    Table[a[n], {n, 11, 60}] (* Jean-François Alcover, Aug 28 2021, after Maple code *)

Formula

a(n) = A116380(n) - A116379(n).
Showing 1-2 of 2 results.