cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116383 Row sums of number triangle A116382.

Original entry on oeis.org

1, 1, 4, 6, 19, 33, 93, 175, 460, 910, 2286, 4676, 11388, 23842, 56808, 120926, 283611, 611065, 1416625, 3079635, 7078263, 15490553, 35374519, 77805481, 176813809, 390379483, 883861033, 1957097715, 4418562265, 9805546875, 22090136885
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Binomial transform is A116387.

Programs

  • GAP
    List([0..40], n-> Sum([0..n], k-> Sum([0..n], j-> (-1)^(n-j)* Binomial(n,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m) )))); # G. C. Greubel, May 22 2019
  • Magma
    T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >;
    [(&+[T(n,k): k in [0..n]]): n in [0..40]]; // G. C. Greubel, May 22 2019
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1+x-4*x^2)/(2*(1-5*x^2)*Sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2)) )); // G. C. Greubel, May 22 2019
    
  • Mathematica
    CoefficientList[Series[(1+x-4*x^2)/(2*(1-5*x^2)*Sqrt[1-4*x^2])+(1+x)/(2*(1-5*x^2)), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x-4*x^2)/(2*(1-5*x^2)*sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2))) \\ G. C. Greubel, May 22 2019
    
  • Sage
    ((1+x-4*x^2)/(2*(1-5*x^2)*sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 22 2019
    

Formula

G.f.: (1+x-4*x^2)/(2*(1-5*x^2)*sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2)).
a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n,j)*Sum_{i=0..j} C(j,i-k) * C(i,j-i).
Conjecture: n*a(n) + (n-2)*a(n-1) + (-13*n+20)*a(n-2) + (-9*n+22)*a(n-3) + 4*(14*n-45)*a(n-4) + 20*(n-3)*a(n-5) + 80*(-n+5)*a(n-6) = 0. - R. J. Mathar, Nov 24 2012
Recurrence: n*(n^2 - 4*n - 1)*a(n) = 4*(2*n-3)*a(n-1) + (9*n^3 - 40*n^2 + 3*n + 48)*a(n-2) - 20*(2*n-3)*a(n-3) - 20*(n-3)*(n^2 - 2*n - 4)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ (5+sqrt(5))/10 * 5^(n/2). - Vaclav Kotesovec, Feb 12 2014