A116383 Row sums of number triangle A116382.
1, 1, 4, 6, 19, 33, 93, 175, 460, 910, 2286, 4676, 11388, 23842, 56808, 120926, 283611, 611065, 1416625, 3079635, 7078263, 15490553, 35374519, 77805481, 176813809, 390379483, 883861033, 1957097715, 4418562265, 9805546875, 22090136885
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
GAP
List([0..40], n-> Sum([0..n], k-> Sum([0..n], j-> (-1)^(n-j)* Binomial(n,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m) )))); # G. C. Greubel, May 22 2019
-
Magma
T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >; [(&+[T(n,k): k in [0..n]]): n in [0..40]]; // G. C. Greubel, May 22 2019
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1+x-4*x^2)/(2*(1-5*x^2)*Sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2)) )); // G. C. Greubel, May 22 2019 -
Mathematica
CoefficientList[Series[(1+x-4*x^2)/(2*(1-5*x^2)*Sqrt[1-4*x^2])+(1+x)/(2*(1-5*x^2)), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
-
PARI
my(x='x+O('x^40)); Vec((1+x-4*x^2)/(2*(1-5*x^2)*sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2))) \\ G. C. Greubel, May 22 2019
-
Sage
((1+x-4*x^2)/(2*(1-5*x^2)*sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 22 2019
Formula
G.f.: (1+x-4*x^2)/(2*(1-5*x^2)*sqrt(1-4*x^2)) + (1+x)/(2*(1-5*x^2)).
a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n,j)*Sum_{i=0..j} C(j,i-k) * C(i,j-i).
Conjecture: n*a(n) + (n-2)*a(n-1) + (-13*n+20)*a(n-2) + (-9*n+22)*a(n-3) + 4*(14*n-45)*a(n-4) + 20*(n-3)*a(n-5) + 80*(-n+5)*a(n-6) = 0. - R. J. Mathar, Nov 24 2012
Recurrence: n*(n^2 - 4*n - 1)*a(n) = 4*(2*n-3)*a(n-1) + (9*n^3 - 40*n^2 + 3*n + 48)*a(n-2) - 20*(2*n-3)*a(n-3) - 20*(n-3)*(n^2 - 2*n - 4)*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ (5+sqrt(5))/10 * 5^(n/2). - Vaclav Kotesovec, Feb 12 2014
Comments