A116384 Diagonal sums of the Riordan array A116382.
1, 0, 3, 1, 10, 6, 36, 28, 135, 121, 517, 507, 2003, 2093, 7815, 8569, 30634, 34902, 120480, 141664, 475002, 573574, 1876294, 2318010, 7422676, 9354540, 29400192, 37708672, 116567356, 151868100, 462561572, 611180252, 1836843591, 2458123705
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..200
Programs
-
GAP
List([0..40], n-> Sum([0..n], k-> Sum([0..n-k], j-> (-1)^(n-k-j)*Binomial(n-k,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m) )))); # G. C. Greubel, May 22 2019
-
Magma
T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >; [(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..40]];
-
Mathematica
T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[n, j]*Sum[Binomial[j, i-k]* Binomial[i, j-i], {i, 0, j}], {j, 0, n}]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, May 22 2019 *)
-
PARI
{T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n,j)*sum(m=0,j, binomial(j,m-k)*binomial(m,j-m) ))};vector(40, n, n--; sum(k=0, floor(n/2), T(n-k,k)) ) \\ G. C. Greubel, May 22 2019
-
Sage
def T(n, k): return sum((-1)^(n-j)*binomial(n,j)*sum(binomial(j,m-k)*binomial(m,j-m) for m in (0..j)) for j in (0..n)) [ sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, May 22 2019
Formula
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)*C(n-k,j) * Sum_{i=0..j} C(j,i-k)C(i,j-i).