cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116384 Diagonal sums of the Riordan array A116382.

Original entry on oeis.org

1, 0, 3, 1, 10, 6, 36, 28, 135, 121, 517, 507, 2003, 2093, 7815, 8569, 30634, 34902, 120480, 141664, 475002, 573574, 1876294, 2318010, 7422676, 9354540, 29400192, 37708672, 116567356, 151868100, 462561572, 611180252, 1836843591, 2458123705
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Programs

  • GAP
    List([0..40], n-> Sum([0..n], k-> Sum([0..n-k], j-> (-1)^(n-k-j)*Binomial(n-k,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m) )))); # G. C. Greubel, May 22 2019
  • Magma
    T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >;
    [(&+[T(n-k,k): k in [0..Floor(n/2)]]): n in [0..40]];
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(n-j)*Binomial[n, j]*Sum[Binomial[j, i-k]* Binomial[i, j-i], {i, 0, j}], {j, 0, n}]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 40}] (* G. C. Greubel, May 22 2019 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n,j)*sum(m=0,j, binomial(j,m-k)*binomial(m,j-m) ))};vector(40, n, n--; sum(k=0, floor(n/2), T(n-k,k)) ) \\ G. C. Greubel, May 22 2019
    
  • Sage
    def T(n, k): return sum((-1)^(n-j)*binomial(n,j)*sum(binomial(j,m-k)*binomial(m,j-m) for m in (0..j)) for j in (0..n))
    [ sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, May 22 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(n-k-j)*C(n-k,j) * Sum_{i=0..j} C(j,i-k)C(i,j-i).