cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116388 Expansion of 1/((1+x*(1-M(x)))*sqrt(1-2*x-3*x^2)), M(x) the g.f. of A001006.

Original entry on oeis.org

1, 1, 4, 10, 29, 82, 236, 681, 1975, 5745, 16757, 48982, 143442, 420721, 1235663, 3633453, 10695292, 31511524, 92919758, 274203662, 809719718, 2392579638, 7073684393, 20924387460, 61925598216, 183350728661, 543095661673
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-k-j) ))); # G. C. Greubel, May 23 2019
  • Magma
    [(&+[ (&+[Binomial(n-k, j-k)*Binomial(j, n-k-j): j in [0..n-k]]) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 23 2019
    
  • Mathematica
    Table[Sum[Sum[Binomial[n-k,j-k]*Binomial[j,n-k-j], {j,0,n-k}], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, May 23 2019 *)
  • PARI
    {a(n) = sum(k=0,n\2, sum(j=0,n-k, binomial(n-k, j-k)*binomial(j,n-k-j)))}; \\ G. C. Greubel, May 23 2019
    
  • Sage
    [sum( sum(binomial(n-k, j-k)*binomial(j,n-k-j) for j in (0..n)) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, May 23 2019
    

Formula

G.f.: 2*x/(sqrt(1-2*x-3*x^2)*(sqrt(1-2*x-3*x^2) -1 +2*x +3*x^2)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(n-k,j-k)*C(j,n-k-j).
Conjecture: n*a(n) + 7*(-n+1)*a(n-1) + 2*(4*n-9)*a(n-2) + (25*n-58)*a(n-3) + (-18*n+65)*a(n-4) + (-52*n+199)*a(n-5) + (-31*n+135)*a(n-6) + 6*(-n+5)*a(n-7) = 0. - R. J. Mathar, Jun 22 2016