A116388 Expansion of 1/((1+x*(1-M(x)))*sqrt(1-2*x-3*x^2)), M(x) the g.f. of A001006.
1, 1, 4, 10, 29, 82, 236, 681, 1975, 5745, 16757, 48982, 143442, 420721, 1235663, 3633453, 10695292, 31511524, 92919758, 274203662, 809719718, 2392579638, 7073684393, 20924387460, 61925598216, 183350728661, 543095661673
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
GAP
List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-k-j) ))); # G. C. Greubel, May 23 2019
-
Magma
[(&+[ (&+[Binomial(n-k, j-k)*Binomial(j, n-k-j): j in [0..n-k]]) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 23 2019
-
Mathematica
Table[Sum[Sum[Binomial[n-k,j-k]*Binomial[j,n-k-j], {j,0,n-k}], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, May 23 2019 *)
-
PARI
{a(n) = sum(k=0,n\2, sum(j=0,n-k, binomial(n-k, j-k)*binomial(j,n-k-j)))}; \\ G. C. Greubel, May 23 2019
-
Sage
[sum( sum(binomial(n-k, j-k)*binomial(j,n-k-j) for j in (0..n)) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, May 23 2019
Formula
G.f.: 2*x/(sqrt(1-2*x-3*x^2)*(sqrt(1-2*x-3*x^2) -1 +2*x +3*x^2)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(n-k,j-k)*C(j,n-k-j).
Conjecture: n*a(n) + 7*(-n+1)*a(n-1) + 2*(4*n-9)*a(n-2) + (25*n-58)*a(n-3) + (-18*n+65)*a(n-4) + (-52*n+199)*a(n-5) + (-31*n+135)*a(n-6) + 6*(-n+5)*a(n-7) = 0. - R. J. Mathar, Jun 22 2016