cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116389 Riordan array (1/sqrt(1-4*x^2), (1+x)/sqrt(1-4*x^2) -1).

Original entry on oeis.org

1, 0, 1, 2, 2, 1, 0, 4, 4, 1, 6, 10, 10, 6, 1, 0, 16, 28, 20, 8, 1, 20, 44, 62, 62, 34, 10, 1, 0, 64, 152, 168, 120, 52, 12, 1, 70, 186, 328, 436, 374, 210, 74, 14, 1, 0, 256, 748, 1084, 1072, 736, 340, 100, 16, 1, 252, 772, 1606, 2598, 2924, 2332, 1326, 518, 130, 18, 1
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Examples

			Triangle begins:
   1;
   0,  1;
   2,  2,  1;
   0,  4,  4,  1;
   6, 10, 10,  6,  1;
   0, 16, 28, 20,  8,  1;
  20, 44, 62, 62, 34, 10, 1;
		

Crossrefs

Row sums are A116390. Diagonal sums are A116391.
Product of A007318 and this sequence is A116392.

Programs

  • Magma
    [[(&+[ (&+[ Round((-1)^(k-j)*4^r*Binomial(k,j)*Binomial(j, n-2*r)*Gamma(r+(j+1)/2)/(Factorial(r)*Gamma((j+1)/2))) : r in [0..Floor(n/2)]]) : j in [0..k]]) : k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 23 2019
    
  • Mathematica
    T[n_,k_]:= Sum[(-1)^(k-j)*Binomial[k,j]*Sum[4^r*Binomial[r+(j-1)/2, r]* Binomial[j, n-2*r], {r,0,Floor[n/2]}], {j,0,k}]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 23 2019 *)
  • PARI
    {T(n,k) = sum(j=0,k, sum(r=0,floor(n/2), (-1)^(k-j)*4^r* binomial(k,j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) ))}; \\ G. C. Greubel, May 23 2019
    
  • Sage
    [[sum( sum( (-1)^(k-j)*4^r* binomial(k,j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) for r in (0..floor(n/2))) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 23 2019

Formula

T(n,k) = Sum_{j=0..k} (-1)^(k-j)*C(k,j) * Sum_{i=0..floor(n/2)} 4^i * C(i+(j-1)/2, i)*C(j,n-2*i).