cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116392 Riordan array (1/sqrt(1-2*x-3*x^2), 1/sqrt(1-2*x-3*x^2) -1).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 7, 13, 7, 1, 19, 42, 32, 10, 1, 51, 131, 128, 60, 13, 1, 141, 406, 475, 292, 97, 16, 1, 393, 1247, 1685, 1267, 561, 143, 19, 1, 1107, 3814, 5800, 5112, 2804, 962, 198, 22, 1, 3139, 11623, 19540, 19624, 12748, 5464, 1522, 262, 25, 1, 8953, 35334
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Triangle, read by rows, given by [1, 2, -1, -1, 2, 1/2, 1/2, 2, -1, -1, 2, 1/2, 1/2, 2, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 11 2020

Examples

			Triangle begins:
   1;
   1,   1;
   3,   4,   1;
   7,  13,   7,  1;
  19,  42,  32, 10,  1;
  51, 131, 128, 60, 13, 1;
		

Crossrefs

Row sums are A115967. Diagonal sums are A116394.
Cf. A321620.

Programs

  • Magma
    [[(&+[ Binomial(n,m)*(&+[ (&+[ Round((-1)^(k-j)*4^r* Binomial(k,j)*Binomial(j, m-2*r)*Gamma(r+(j+1)/2)/(Factorial(r)*Gamma((j+1)/2))) : r in [0..Floor(n/2)]]) : j in [0..k]]): m in [0..n]]) : k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 23 2019
    
  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare(1/sqrt(1 - 2*x - 3*x^2), 10); # Peter Luschny, Feb 15 2020
  • Mathematica
    t[n_,k_]:= Sum[(-1)^(k-j)*Binomial[k,j]*Sum[4^r*Binomial[r+(j-1)/2, r]* Binomial[j, n-2*r], {r,0,Floor[n/2]}], {j,0,k}]; Table[Sum[Binomial[n, j]*t[j,k], {j,0,n}] {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 23 2019 *)
  • PARI
    t(n,k) = sum(j=0,k, sum(r=0,floor(n/2), (-1)^(k-j)*4^r* binomial(k,j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) ));
    T(n,k) = sum(j=0,n, binomial(n,j)*t(j,k)); \\ G. C. Greubel, May 23 2019
    
  • Sage
    [[sum(binomial(n,m)*sum( sum( (-1)^(k-j)*4^r* binomial(k,j)* binomial(r+(j-1)/2, r)*binomial(j, m-2*r) for r in (0..floor(n/2))) for j in (0..k)) for m in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 23 2019

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n,j)*A116389(j,k).