cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116394 Expansion of 1/((1+x)*sqrt(1-2*x-3*x^2) - x).

Original entry on oeis.org

1, 1, 4, 11, 33, 100, 305, 937, 2890, 8943, 27741, 86216, 268355, 836297, 2608818, 8144875, 25446229, 79545148, 248780979, 778400001, 2436380402, 7628211951, 23890103153, 74836927720, 234478937321, 734802907841, 2303073316042
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Crossrefs

Diagonal sums of number triangle A116392.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/((1+x)*Sqrt(1-2*x-3*x^2) - x) )); // G. C. Greubel, May 28 2019
    
  • Mathematica
    CoefficientList[Series[1/((1+x)*Sqrt[1-2x-3x^2] -x), {x, 0, 30}], x] (* G. C. Greubel, May 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/((1+x)*sqrt(1-2*x-3*x^2) - x)) \\ G. C. Greubel, May 28 2019
    
  • Sage
    (1/((1+x)*sqrt(1-2*x-3*x^2) - x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} A116392(n-k,k).
D-finite with recurrence: n*a(n) +2*(-n+1)*a(n-1) +2*(-5*n+6)*a(n-2) +2*(3*n-7)*a(n-3) +2*(17*n-50)*a(n-4) +6*(5*n-17)*a(n-5) +9*(n-4)*a(n-6)=0. - R. J. Mathar, Jan 23 2020