cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116395 Riordan array (1/sqrt(1-4*x), (1/sqrt(1-4*x)-1)/2).

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 20, 22, 8, 1, 70, 93, 47, 11, 1, 252, 386, 244, 81, 14, 1, 924, 1586, 1186, 500, 124, 17, 1, 3432, 6476, 5536, 2794, 888, 176, 20, 1, 12870, 26333, 25147, 14649, 5615, 1435, 237, 23, 1, 48620, 106762, 112028, 73489, 32714, 10135, 2168, 307, 26, 1
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Row sums are A007854. Diagonal sums are A116396.
Triangle T(n,k), 0 <= k <= n, read by rows given by [2,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 05 2007
Inverse of Riordan array (1/(1+2*x), x*(1+x)/(1+2*x)^2) (see A123876). - Philippe Deléham, Oct 25 2007

Examples

			Triangle begins:
    1;
    2,   1;
    6,   5,   1;
   20,  22,   8,  1;
   70,  93,  47, 11,  1;
  252, 386, 244, 81, 14, 1;
		

Programs

  • Magma
    [[ Round((4^n/2^k)*(&+[ (-1)^(k-j)*Binomial(k, j)*Gamma(n+(j+1)/2)/(Factorial(n)*Gamma((j+1)/2)) : j in [0..k]])) : k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 28 2019
    
  • Mathematica
    T[n_, k_]:= (4^n/2^k)*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n+(j-1)/2, n], {j, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 28 2019 *)
  • PARI
    {T(n,k) = (4^n/2^k)*sum(j=0, k, (-1)^(k-j)*binomial(k, j)* binomial(n+(j-1)/2, n))}; \\ G. C. Greubel, May 28 2019
    
  • Sage
    [[(4^n/2^k)*sum( (-1)^(k-j)*binomial(k, j)* binomial(n+(j-1)/2, n) for j in (0..k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 28 2019

Formula

Number triangle T(n,k) = (4^n/2^k)*Sum_{j=0..k} C(k,j)*C(n+(j-1)/2,n)*(-1)^(k-j).
Sum_{k=0..n} (-1)^k*T(n,k) = A000108(n), Catalan numbers. - Philippe Deléham, Nov 07 2006
T(n,k) = Sum_{j>=0} A039599(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Oct 25 2007