cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116408 E.g.f. exp(x)*(Bessel_I(2,2*x) - Bessel_I(3,2*x) + Bessel_I(4,2*x)).

Original entry on oeis.org

0, 0, 1, 2, 7, 20, 61, 182, 546, 1632, 4875, 14542, 43340, 129064, 384111, 1142610, 3397656, 10100448, 30020283, 89213094, 265096455, 787695636, 2340488535, 6954401762, 20664628438, 61406952800, 182488572045, 542358944946
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Third column in number triangle A116407.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x](BesselI[2,2x]-BesselI[3,2x ]+ BesselI[ 4,2x]),{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Mar 13 2013 *)

Formula

a(n) = Sum{k=0..n} C(n,k)*(-1)^k*(C(k+1,k/2-1)*(1+(-1)^k)/2 + C(k,(k-1)/2-1)*(1-(-1)^k)/2).
Conjecture: 2*(n+4)*(n-23)*a(n) + 2*(n^2+64n+79)*a(n-1) +(-59n^2+232n+740)*a(n-2) +(64n^2-585n+1019)*a(n-3) +3(n-3)*(41n-124)*a(n-4)=0. - R. J. Mathar, Dec 10 2011
Shorter recurrence: (n-2)*(n+4)*(3*n^2-5*n+36)*a(n) = n*(6*n^3-n^2+70*n-139)*a(n-1) + 3*(n-1)*n*(3*n^2+n+34)*a(n-2) - Vaclav Kotesovec, Jun 26 2013
a(n) ~ 3^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Jun 26 2013