cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116410 Expansion of (1-x-2x^2+sqrt(1-2x-3x^2))/(2*(1-2x-3x^2)).

Original entry on oeis.org

1, 1, 3, 8, 23, 66, 192, 561, 1647, 4850, 14318, 42351, 125468, 372191, 1105275, 3285288, 9772767, 29090826, 86646486, 258208671, 769820418, 2296067565, 6850744365, 20447143866, 61045757604, 182303186391, 544550917797
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Partial sums are A116409.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 3, 8][n+1],
         ((5*n-4)*a(n-1)-(3*n-6)*a(n-2)-(9*n-18)*a(n-3))/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 30 2016
  • Mathematica
    Table[ (4 3^k + 3 (-1)^k DifferenceRoot[Function[{y, n}, {(-3 + 3 n) y[n] + (2 - 5 n) y[1 + n] + (-1 + n) y[2 + n] + (2 + n) y[3 + n] == 0, y[-1] == 0, y[0] == 0, y[1] == 1}]][1 + k] + 3^(2 + k)DifferenceRoot[Function[{y, n}, {(-1 + n) y[n] + (2 + n) y[1 + n] + (-7 - 5 n) y[2 + n] + (6 + 3 n) y[3 + n] == 0, y[-1] == 0, y[0] == 0, y[1] == 1}]][1 + k])/24, {k, 1, 20}] (* Benedict W. J. Irwin, May 30 2016 *)

Formula

a(n) = ((3^n+2*0^n)/3 + Sum_{k=0..floor(n/2)} C(n,2k)C(2k,k))/2.
From Benedict W. J. Irwin, May 30 2016: (Start)
Let y1(-1)=0, y1(0)=0, y1(1)=1,
Let (3n-3)*y1(n)+(2-5n)*y1(n+1)+(n-1)*y1(n+2)+(n+2)*y1(n+3)=0,
Let y2(-1)=0, y2(0)=0, y2(1)=1,
Let (n-1)*y2(n)+(2+n)*y2(n+1)-(5n+7)*y2(n+2)+(3n+6)*y2(n+3)=0,
a(n) = (4*3^n+3*(-1)^n*y1(n+1)+3^(n+2)*y2(n+1))/24, n>0.
(End)
a(n) ~ 3^(n-1)/2 * (1 + 3*sqrt(3/(Pi*n))/2). - Vaclav Kotesovec, May 30 2016
D-finite with recurrence: a(n) = ((5*n-4)*a(n-1) -(3*n-6)*a(n-2) -(9*n-18)*a(n-3))/n for n>3. - Alois P. Heinz, May 30 2016