cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116424 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDUU's, 0 <= k <= floor((n-1)/2).

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 5, 22, 19, 1, 57, 66, 9, 154, 221, 53, 1, 429, 729, 258, 14, 1223, 2391, 1131, 116, 1, 3550, 7829, 4652, 745, 20, 10455, 25638, 18357, 4115, 220, 1, 31160, 84033, 70404, 20598, 1790, 27, 93802, 275765, 264563, 96286, 12104, 379, 1, 284789
Offset: 0

Views

Author

I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006

Keywords

Comments

T(n,k) also gives the number of Dyck paths of semilength n with k UUDU's.
Column k=0 gives A105633(n-1) for n > 0.

Examples

			Triangle begins:
00 :     1;
01 :     1;
02 :     2;
03 :     4,    1;
04 :     9,    5;
05 :    22,   19,    1;
06 :    57,   66,    9;
07 :   154,  221,   53,   1;
08 :   429,  729,  258,  14;
09 :  1223, 2391, 1131, 116,  1;
10 :  3550, 7829, 4652, 745, 20;
...
T(4,1) = 5 because there exist five Dyck paths of semilength 4 with one occurrence of UDUU : UDUUUDDD, UDUUDUDD, UDUUDDUD, UUDUUDDD, UDUDUUDD.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])*
         `if`(t=4, z, 1) +b(x-1, y-1, [1, 3, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    s = Series[((1 + (t - 1) z^2) - Sqrt[(1 + (t - 1) z^2)^2 - 4*z*(1 - z + z*t)])/(2*z*(1 - z + z*t)), {z, 0, 15}] // CoefficientList[#, z]&;
    CoefficientList[#, t]& /@ s // Flatten (* updated by Jean-François Alcover, Feb 14 2021 *)

Formula

T(n,k) = Sum_{i=k..floor((n-1)/2)} (-1)^(i+k) * binomial(i,k) * binomial(n-i,i) * binomial(2*n-3*i, n - 2*i -1)/(n-i), n >= 1.
G.f. G = G(t,z) satisfies G = 1 + z^2(1-t)G + z(1-z+tz)G^2.