cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116477 a(n) = Sum_{1<=k<=n, gcd(k,n)=1} floor(n/k).

Original entry on oeis.org

1, 2, 4, 5, 9, 7, 15, 12, 18, 15, 28, 16, 36, 23, 31, 30, 51, 26, 59, 34, 50, 43, 75, 37, 77, 52, 72, 55, 102, 42, 112, 69, 90, 73, 106, 61, 141, 84, 109, 80, 159, 66, 169, 97, 119, 108, 187, 84, 185, 103, 155, 121, 218, 97, 193, 126, 179, 142, 248, 95, 262, 152, 185
Offset: 1

Views

Author

Leroy Quet, Mar 18 2006

Keywords

Comments

sum{k|n} a(k) = sum{k=1 to n} d(k), where d(k) is the number of positive divisors of k.
Equals A054525 * A006218 (Mobius transform of A006218). - Gary W. Adamson, Aug 07 2008

Examples

			a(6)=7 because the numbers relatively prime to 6 and not exceeding 6 are 1 and 5, yielding floor(6/1) + floor(6/5) = 7.
		

Crossrefs

Cf. A006218. Row sums of A122191.
Cf. A054525. - Gary W. Adamson, Aug 07 2008

Programs

  • Maple
    a:=proc(n) local s,j: s:=0: for j from 1 to n do if gcd(j,n)=1 then s:=s+floor(n/j) else s:=s: fi od: s: end: seq(a(n),n=1..75);
  • Mathematica
    Table[a := Select[Range[n], GCD[n, # ] == 1 &]; Sum[Floor[n/a[[i]]], {i, 1, Length[a]}], {n, 1, 60}]
  • PARI
    A116477(n) = sum(k=1,n,(gcd(k,n)==1)*floor(n/k)) \\ Michael B. Porter, Mar 01 2010
    
  • PARI
    A006218(n)=sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2
    a(n,f=factor(n))=my(K=1,N); for(i=1,#f~, if(f[i,2]>1, K*=f[i,1]^(f[i,2]-1); f[i,2]=1)); sumdiv(N=n/K,k,moebius(N/k)*A006218(k*K)) \\ Charles R Greathouse IV, Nov 30 2021

Formula

a(n) is also Sum_{k|n} mu(n/k) (Sum_{j=1..k} d(j)) and Sum_{k=1..n} phi(n,n/k), where mu() is the Mobius (Moebius) function, d(j) is the number of positive divisors of j and phi(n,x) is the number of positive integers which are <= x and are coprime to n.

Extensions

More terms from Emeric Deutsch and Stefan Steinerberger, Apr 01 2006