A116485 Number of permutations in S_n that avoid the pattern 12453 (or equivalently, 31245).
1, 1, 2, 6, 24, 119, 694, 4581, 33286, 260927, 2174398, 19053058, 174094868, 1648198050, 16085475576, 161174636600, 1652590573612, 17292601075489, 184246699159418, 1995064785620557, 21919480341617102, 244015986016996763, 2749174129340156922, 31313478171012371344
Offset: 0
Keywords
Links
- Yonah Biers-Ariel, Table of n, a(n) for n = 0..37
- Yonah Biers-Ariel, Julia program to compute terms
- Miklos Bona, The limit of a Stanley-Wilf sequence is not always rational, and layered patterns beat monotone patterns, arXiv:math/0403502 [math.CO], 2004.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
Crossrefs
Programs
-
Mathematica
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p, lpat = Subsets[(n + 1) - Range[n], {Length[pat]}], psn = Permutations[Range[n]]}, For[i = 1, i <= Length[lpat], i++, p = lpat[[i]]; AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]]; ]; n! - Length[Union[Flatten[lseq, 1]]]]; Table[avoid[n, {1, 2, 4, 5, 3}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
Formula
Conjecture: a(n) + A158423(n) = n!. - Benedict W. J. Irwin, Mar 15 2016
The conjecture is true: All that is needed is to show that 23145 is Wilf-equivalent to 31245, but that’s obvious since they are inverses. - Doron Zeilberger and Yonah Biers-Ariel, Feb 26 2019
The exponential growth rate is 9+4*sqrt(2). See [Bona 2004]. - David Bevan, Jun 17 2021
Extensions
More terms from the Zvezdelina Stankova-Frenkel and Julian West paper. - N. J. A. Sloane, Mar 19 2015
More terms from Doron Zeilberger and Yonah Biers-Ariel, Feb 26 2019
More terms from Yonah Biers-Ariel, Mar 04 2019
Comments