cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116524 a(0)=1, a(1)=1, a(n) = 13*a(n/2) for n=2,4,6,..., a(n) = 12*a((n-1)/2) + a((n+1)/2) for n=3,5,7,....

Original entry on oeis.org

0, 1, 13, 25, 169, 181, 325, 469, 2197, 2209, 2353, 2497, 4225, 4369, 6097, 7825, 28561, 28573, 28717, 28861, 30589, 30733, 32461, 34189, 54925, 55069, 56797, 58525, 79261, 80989, 101725, 122461, 371293, 371305, 371449, 371593, 373321
Offset: 0

Views

Author

Roger L. Bagula, Mar 15 2006

Keywords

Comments

A 13-divide version of A084230.
The Harborth : f(2^k)=3^k suggests that a family of sequences of the form: f(2^k)=Prime[n]^k There does indeed seem to be an infinite family of such functions.

Crossrefs

Programs

  • Maple
    a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 13*a(n/2) else 12*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n),n=0..40);
  • Mathematica
    b[0] := 0; b[1] := 1; b[n_?EvenQ] := b[n] = 13*b[n/2]; b[n_?OddQ] := b[n] = 12*b[(n - 1)/2] + b[(n + 1)/2]; a = Table[b[n], {n, 1, 25}]

Formula

a(n) = Sum_{k=0..n-1} 12^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019

Extensions

Edited by N. J. A. Sloane, Apr 16 2005