cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116541 Triangular numbers for which the number of divisors is also a triangular number.

Original entry on oeis.org

1, 28, 45, 153, 171, 325, 496, 2016, 3321, 4753, 4950, 7260, 7381, 8256, 11628, 13203, 14196, 20100, 29161, 41616, 56953, 64620, 65341, 73536, 76636, 77028, 89676, 90100, 97461, 101475, 126756, 130816, 150975, 166176, 166753, 179700, 180300
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 03 2006

Keywords

Examples

			496 is in the sequence because it is a triangular number (31*32/2) and has 10=4*5/2 divisors (1,2,4,8,16,31,62,124,248,496).
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local s: s:=tau(n*(n+1)/2): if type(sqrt(1+8*s)/2-1/2,integer)=true then n*(n+1)/2 else fi end: seq(a(n),n=1..750); # Emeric Deutsch, Apr 06 2006
  • Mathematica
    Select[Range[600]*Range[2, 601]/2, IntegerQ@ Sqrt[8 DivisorSigma[0, #] + 1] &] (* Robert G. Wilson v, Apr 20 2006 *)
  • PARI
    seq(N) = {
      my(a = vector(N), n = 1, cnt=0);
      while (cnt < N,
            my(tn = n*(n+1)/2, d = numdiv(tn), x = (sqrtint(1+8*d)-1)\2);
            if (x*(x+1)/2 == d, a[cnt++] = tn); n++);
      return(a);
    };
    seq(37)  \\ Gheorghe Coserea, Jun 12 2016

Extensions

More terms from Emeric Deutsch, Apr 06 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016