A116541 Triangular numbers for which the number of divisors is also a triangular number.
1, 28, 45, 153, 171, 325, 496, 2016, 3321, 4753, 4950, 7260, 7381, 8256, 11628, 13203, 14196, 20100, 29161, 41616, 56953, 64620, 65341, 73536, 76636, 77028, 89676, 90100, 97461, 101475, 126756, 130816, 150975, 166176, 166753, 179700, 180300
Offset: 1
Keywords
Examples
496 is in the sequence because it is a triangular number (31*32/2) and has 10=4*5/2 divisors (1,2,4,8,16,31,62,124,248,496).
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
Programs
-
Maple
with(numtheory): a:=proc(n) local s: s:=tau(n*(n+1)/2): if type(sqrt(1+8*s)/2-1/2,integer)=true then n*(n+1)/2 else fi end: seq(a(n),n=1..750); # Emeric Deutsch, Apr 06 2006
-
Mathematica
Select[Range[600]*Range[2, 601]/2, IntegerQ@ Sqrt[8 DivisorSigma[0, #] + 1] &] (* Robert G. Wilson v, Apr 20 2006 *)
-
PARI
seq(N) = { my(a = vector(N), n = 1, cnt=0); while (cnt < N, my(tn = n*(n+1)/2, d = numdiv(tn), x = (sqrtint(1+8*d)-1)\2); if (x*(x+1)/2 == d, a[cnt++] = tn); n++); return(a); }; seq(37) \\ Gheorghe Coserea, Jun 12 2016
Extensions
More terms from Emeric Deutsch, Apr 06 2006
Typos in Mma program corrected by Giovanni Resta, Jun 12 2016