A116549 a(0) = 1. a(m + 2^n) = a(n) + a(m), for 0 <= m <= 2^n - 1.
1, 2, 3, 4, 4, 5, 6, 7, 5, 6, 7, 8, 8, 9, 10, 11, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 10, 11, 12, 13, 13, 14, 15, 16, 14, 15, 16, 17, 17, 18, 19, 20
Offset: 0
Examples
From _Gus Wiseman_, Jul 22 2019: (Start) A finitary (or hereditarily finite) set is equivalent to a rooted identity tree. The following list shows the first few rooted identity trees together with their corresponding index in the sequence (o = leaf). 0: o 1: (o) 2: ((o)) 3: (o(o)) 4: (((o))) 5: (o((o))) 6: ((o)((o))) 7: (o(o)((o))) 8: ((o(o))) 9: (o(o(o))) 10: ((o)(o(o))) 11: (o(o)(o(o))) 12: (((o))(o(o))) 13: (o((o))(o(o))) 14: ((o)((o))(o(o))) 15: (o(o)((o))(o(o))) 16: ((((o)))) 17: (o(((o)))) 18: ((o)(((o)))) 10: (o(o)(((o)))) (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
import Data.Function (on); import Data.List (genericIndex) a116549 = genericIndex a116549_list a116549_list = 1 : zipWith ((+) `on` a116549) a000523_list a053645_list -- Reinhard Zumkeller, Aug 27 2014
-
Mathematica
Nest[Append[#1, #1[[#3 + 1]] + #1[[#2 - 2^#3 + 1]] & @@ {#1, #2, Floor@ Log2@ #2}] & @@ {#, Length@ #} &, {1}, 63] (* Michael De Vlieger, Apr 21 2019 *) bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; dab[n_]:=1+Total[dab/@(bpe[n]-1)]; Array[dab,30,0] (* Gus Wiseman, Jul 22 2019 *)
Comments