A116550 The bi-unitary analog of Euler's totient function of n.
1, 1, 2, 3, 4, 3, 6, 7, 8, 6, 10, 8, 12, 9, 9, 15, 16, 12, 18, 14, 14, 15, 22, 17, 24, 18, 26, 21, 28, 15, 30, 31, 23, 24, 25, 29, 36, 27, 28, 31, 40, 21, 42, 35, 34, 33, 46, 36, 48, 36, 37, 42, 52, 39, 42, 46, 42, 42, 58, 34, 60, 45, 51, 63, 50, 35, 66, 56, 51, 38, 70, 62, 72, 54
Offset: 1
Keywords
Examples
12 = 2^2 * 3^1. Of the positive integers < 12, there are 8 integers where no prime divides these integers the same number of times the prime divides 12: 1, 2 = 2^1, 5 = 5^1, 7 = 7^1, 8 = 2^3, 9 = 3^2, 10 = 2^1 *5^1 and 11 = 11^1. So a(12) = 8. The other positive integers < 12 (3 = 3^1, 4 = 2^2 and 6 = 2^1 * 3^1) each are divisible by at least one prime the same number of times this prime divides 12.
References
- M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- László Tóth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS, Vol. 12 (2009), Article 09.5.2, function phi**(n).
Programs
-
Maple
# returns the greatest common unitary divisor of m and n, A225174(m,n) f:=proc(m,n) local i,ans; ans:=1; for i from 1 to min(m,n) do if ((m mod i) = 0) and (igcd(i,m/i) = 1) then if ((n mod i) = 0) and (igcd(i,n/i) = 1) then ans:=i; fi; fi; od; ans; end; A116550:=proc(n) global f; local ct,m; ct:=0; if n = 1 then RETURN(1) else for m from 1 to n-1 do if f(m,n)=1 then ct:=ct+1; fi; od: fi; ct; end; # N. J. A. Sloane, May 01 2013 A116550 := proc(n) local a,k; a := 0 ; for k from 1 to n do if A165430(k,n) = 1 then a := a+1 ; end if ; end do: a ; end proc: # R. J. Mathar, Jul 21 2016
-
Mathematica
a[1] = 1; a[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Sep 05 2013 *) phi[x_, n_] := DivisorSum[n, MoebiusMu[#]*Floor[x/#] &]; a[n_] := DivisorSum[n, (-1)^PrimeNu[#]*phi[n/#, #] &, CoprimeQ[#, n/#] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m))); a(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1)); \\ Michel Marcus, Nov 09 2017
-
PARI
phi(x,n) = sumdiv(n, d, moebius(d)*floor(x/d)); a(n) = sumdiv(n, d, (gcd(d, n/d) == 1) * (-1)^omega(d) * phi(n/d,d)); \\ Amiram Eldar, Jul 16 2022
Formula
For n>1, if n = product{p=primes,p|n} p^b(n,p), where each b(n,p) is a positive integer, then a(n) is number of positive integers m, m < n, such that each b(m,p) does not equal b(n,p).
a(n) = Sum_{d|n, gcd(d,n/d)=1} (-1)^omega(d) * phi(x, n), where phi(x, n) = #{1 <= k <= x, gcd(k, n) = 1} = Sum_{d|n} mu(d) * floor(x/d) (Tóth, 2009). - Amiram Eldar, Jul 16 2022
Extensions
More terms from R. J. Mathar, Jan 23 2008
Entry revised by N. J. A. Sloane, May 01 2013
Comments