A116596 Number of partitions of n having exactly 1 part that appears exactly once.
1, 1, 1, 2, 4, 4, 8, 8, 12, 16, 23, 24, 40, 45, 59, 72, 99, 108, 153, 171, 224, 263, 341, 377, 504, 567, 711, 821, 1035, 1153, 1467, 1648, 2028, 2317, 2841, 3171, 3923, 4403, 5308, 6014, 7250, 8095, 9778, 10949, 13018, 14672, 17400, 19405, 23061, 25769, 30243
Offset: 1
Keywords
Examples
a(5)=4 because we have [5],[3,1,1],[2,2,1] and [2,1,1,1] ([4,1],[3,2] and [1,1,1,1,1] do not qualify).
Crossrefs
Cf. A116595.
Programs
-
Maple
f:=sum(x^j*(1-x^j)/(1-x^j+x^(2*j)),j=1..75)*product((1-x^j+x^(2*j))/(1-x^j),j=1..75): fser:=series(f,x=0,73): seq(coeff(fser,x^n),n=1..55);
-
Mathematica
z = 30; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; m1[p_] := Min[Map[Length, Split[p]]]; Table[Count[IntegerPartitions[n], p_ /; u[p] == m1[p]], {n, 0, z}] (* Clark Kimberling, Apr 23 2014 *)
Formula
G.f.=sum(x^j*(1-x^j)/(1-x^j+x^(2j)), j=1..infinity)product((1-x^j+x^(2j))/(1-x^j), j=1..infinity).
G.f. for number of partitions of n having exactly 1 part that appears exactly m times is sum(x^(m*j)*(1-x^j)/(1-x^(m*j)+x^((m+1)*j)), j=1..infinity)*product((1-x^(m*j)+x^((m+1)*j))/(1-x^j), j=1..infinity). - Vladeta Jovovic, May 01 2006
Comments