A116598 Triangle read by rows: T(n,k) is the number of partitions of n having exactly k parts equal to 1 (n>=0, 0<=k<=n).
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 2, 2, 1, 1, 0, 1, 4, 4, 2, 2, 1, 1, 0, 1, 7, 4, 4, 2, 2, 1, 1, 0, 1, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 21, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 24, 21, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 0
Examples
T(6,2) = 2 because we have [4,1,1] and [2,2,1,1]. Triangle starts: 00: 1, 01: 0, 1, 02: 1, 0, 1, 03: 1, 1, 0, 1, 04: 2, 1, 1, 0, 1, 05: 2, 2, 1, 1, 0, 1, 06: 4, 2, 2, 1, 1, 0, 1, 07: 4, 4, 2, 2, 1, 1, 0, 1, 08: 7, 4, 4, 2, 2, 1, 1, 0, 1, 09: 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 10: 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 11: 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 12: 21, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 13: 24, 21, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 14: 34, 24, 21, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, 15: 41, 34, 24, 21, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
with(combinat): T:=proc(n,k) if k
-
Mathematica
nn = 20; p = Product[1/(1 - x^i), {i, 2, nn}]; Prepend[CoefficientList[Table[Coefficient[Series[p /(1 - x y), {x, 0, nn}], x^n], {n, 1, nn}], y], 1] // Flatten (* Geoffrey Critzer, Jan 22 2012 *)
Comments