A116623 a(0)=1, a(2n) = a(n)+A000079(A000523(2n)), a(2n+1) = 3*a(n) + A000079(A000523(2n+1)+1).
1, 5, 7, 19, 11, 29, 23, 65, 19, 49, 37, 103, 31, 85, 73, 211, 35, 89, 65, 179, 53, 143, 119, 341, 47, 125, 101, 287, 89, 251, 227, 665, 67, 169, 121, 331, 97, 259, 211, 601, 85, 223, 175, 493, 151, 421, 373, 1087, 79, 205, 157, 439, 133, 367, 319, 925, 121
Offset: 0
Crossrefs
Programs
-
Maple
A116623 := proc(n) option remember; if n = 0 then 1; elif type(n,'even') then procname(n/2)+2^A000523(n) ; else 3*procname(floor(n/2))+2^(1+A000523(n)) ; end if; end proc: # R. J. Mathar, Nov 28 2016
-
Mathematica
a[n_] := a[n] = Which[n == 0, 1, EvenQ[n], a[n/2] + 2^Floor@Log2[n], True, 3a[Floor[n/2]] + 2^(1 + Floor@Log2[n])]; Table[a[n], {n, 0, 56}] (* Jean-François Alcover, Sep 01 2023 *)
Comments