A116647 Triangle of number of partitions that fit in an n X n box (but not in an (n-1) X (n-1) box) with Durfee square k.
1, 3, 1, 5, 8, 1, 7, 27, 15, 1, 9, 64, 84, 24, 1, 11, 125, 300, 200, 35, 1, 13, 216, 825, 1000, 405, 48, 1, 15, 343, 1911, 3675, 2695, 735, 63, 1, 17, 512, 3920, 10976, 12740, 6272, 1232, 80, 1, 19, 729, 7344, 28224, 47628, 37044, 13104, 1944, 99, 1, 21, 1000, 12825
Offset: 1
Examples
Triangle begins 1; 3, 1; 5, 8, 1; 7, 27, 15, 1; 9, 64, 84, 24, 1; 11, 125, 300, 200, 35, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric Weisstein's World of Mathematics, Durfee Square.
Programs
-
Mathematica
Table[Binomial[n, k]^2 - Binomial[n - 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Nov 20 2017 *)
-
PARI
for(n=1,10, for(k=0,n, print1(binomial(n,k)^2 - binomial(n-1,k)^2, ", "))) \\ G. C. Greubel, Nov 20 2017
Formula
T(n,k) = binomial(n,k)^2 - binomial(n-1,k)^2.