cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A116665 Total number of parts that appear exactly once in the partitions of n into odd parts.

Original entry on oeis.org

0, 1, 0, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 31, 39, 47, 58, 71, 85, 103, 124, 148, 176, 210, 248, 293, 345, 405, 474, 555, 645, 751, 872, 1009, 1166, 1346, 1549, 1781, 2044, 2341, 2678, 3060, 3488, 3973, 4520, 5132, 5822, 6597, 7464, 8436, 9525, 10740
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

a(n) = Sum(k*A116664(n,k), k>=0).

Examples

			a(8) = 6 because in the partitions of 8 into odd parts, namely, [(7),(1)], [(5),(3)], [(5),1,1,1], [3,3,1,1], [(3),1,1,1,1,1] and [1,1,1,1,1,1,1,1], we have 6 parts that appear exactly once (shown between parentheses).
		

Crossrefs

Cf. A116664.

Programs

  • Maple
    f:=x*(1-x+x^2)/(1-x^4)/product(1-x^(2*j-1),j=1..40): fser:=series(f,x=0,61): seq(coeff(fser,x,n),n=0..57);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, add((p-> p+`if`(j=1, [0, p[1]], 0))
           (b(n-i*j, i-2)), j=0..n/i)))
        end:
    a:= n-> b(n, n-irem(n+1, 2))[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 16 2014
  • Mathematica
    b[n_, i_] :=  b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{p}, p + If[j == 1, {0, p[[1]]}, 0]][b[n-i*j, i-2]], {j, 0, n/i}]]]; a[n_] := b[n, n - Mod[n+1, 2]][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
    nmax = 60; CoefficientList[Series[x*(1-x+x^2)/(1-x^4) * Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: x(1-x+x^2)/[(1-x^4)product(1-x^(2j-1), j=1..infinity)].
a(n) ~ 3^(1/4) * exp(sqrt(n/3)*Pi) / (8*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
Showing 1-1 of 1 results.