A116675 Triangle read by rows: T(n,k) is the number of partitions of n into distinct part and having exactly k odd parts (n>=0, k>=0).
1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 3, 0, 2, 0, 2, 0, 5, 0, 2, 0, 4, 0, 7, 0, 1, 3, 0, 7, 0, 0, 10, 0, 2, 4, 0, 11, 0, 0, 14, 0, 4, 5, 0, 17, 0, 0, 19, 0, 8, 6, 0, 25, 0, 1, 0, 25, 0, 13, 0, 8, 0, 36, 0, 2, 0, 33, 0, 21, 0, 10, 0, 50, 0, 4, 0, 43, 0, 33, 0, 12, 0, 69, 0, 8, 0, 55, 0, 49, 0, 15, 0, 93, 0, 14
Offset: 0
Examples
T(8,2) = 4 because we have [7,1], [5,3], [5,2,1] and [4,3,1] ([8] and [6,2] do not qualify). Triangle starts: 1; 0, 1; 1, 0; 0, 2; 1, 0, 1; 0, 3, 0;
Links
- Alois P. Heinz, Rows n = 0..750, flattened
Programs
-
Maple
g:=product((1+t*x^(2*j-1))*(1+x^(2*j)),j=1..25): gser:=simplify(series(g,x=0,38)): P[0]:=1: for n from 1 to 26 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 26 do seq(coeff(P[n],t,j),j=0..floor(sqrt(n))) od; # yields sequence in triangular form # second Maple program: b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)-> x+y, b(n, i-1), `if`(i>n, [], [`if`(irem(i,2)=0, [][], 0), b(n-i, i-1)[]]), 0))) end: T:= proc(n) local l; l:= b(n, n); l[], 0$(1+floor(sqrt(n))-nops(l)) end: seq (T(n), n=0..30); # Alois P. Heinz, Nov 21 2012
-
Mathematica
rows = 25; coes = CoefficientList[Product[(1+t*x^(2j-1))(1+x^(2j)), {j, 1, rows}], {x, t}][[1 ;; rows]]; MapIndexed[Take[#1, Floor[Sqrt[#2[[1]]-1]]+1]&, coes] // Flatten (* Jean-François Alcover, May 13 2015 *)
Formula
G.f.: product((1+tx^(2j-1))(1+x^(2j)), j=1..infinity).
Comments