A116682 Sum of the odd parts in all partitions of n into distinct parts.
0, 1, 0, 4, 4, 9, 10, 17, 26, 38, 50, 66, 92, 116, 154, 203, 264, 326, 416, 514, 644, 802, 986, 1198, 1474, 1784, 2156, 2608, 3124, 3728, 4454, 5286, 6266, 7420, 8736, 10279, 12062, 14106, 16472, 19214, 22330, 25914, 30032, 34714, 40058, 46208, 53136
Offset: 0
Keywords
Examples
a(9)=38 because in the partitions of 9 into distinct parts, namely, [9],[8,1],[7,2],[6,3],[6,2,1],[5,4],[5,3,1] and [4,3,2], the sum of the odd parts is 9+1+7+3+1+5+5+3+1+3=38.
Links
- David A. Corneth, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:=product(1+x^j,j=1..70)*sum((2*j-1)*x^(2*j-1)/(1+x^(2*j-1)),j=1..40): fser:=series(f,x=0,60): seq(coeff(fser,x,n),n=0..50);
-
Mathematica
d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &] Map[Total[Select[Flatten[d[#]], OddQ]] &, -1 + Range[30]] (* Peter J. C. Moses, Mar 14 2014 *) (* or *) CoefficientList[Series[QPochhammer[-1, x]*(1 + EllipticTheta[2, 0, x]^4 - EllipticTheta[4, 0, x]^4)/48, {x, 0, 100}], x] (* Vaclav Kotesovec, Jun 24 2025 *)
Formula
a(n) = Sum_{k=0..n} k*A116681(n,k).
G.f.: (Product_{j>=1} 1+x^j)*(Sum_{j>=1} (2*j-1)*x^(2*j-1)/(1+x^(2*j-1))).
a(n) = Sum_{k=0..floor(n/2)} A000700(n-2*k) * A000009(2*k) * (n - 2*k). - David A. Corneth, Jun 24 2025