A116685 Triangle read by rows: T(n,k) is number of partitions of n that have k parts smaller than the largest part (n>=1, k>=0).
1, 2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 4, 2, 3, 1, 1, 2, 5, 3, 3, 1, 1, 4, 4, 6, 3, 3, 1, 1, 3, 6, 6, 7, 3, 3, 1, 1, 4, 6, 10, 7, 7, 3, 3, 1, 1, 2, 9, 10, 12, 8, 7, 3, 3, 1, 1, 6, 6, 15, 14, 13, 8, 7, 3, 3, 1, 1, 2, 11, 15, 20, 16, 14, 8, 7, 3, 3, 1, 1, 4, 10, 21, 22, 24, 17, 14, 8, 7, 3, 3, 1, 1, 4, 11, 21
Offset: 1
Examples
Triangle starts: 01: 1 02: 2 03: 2 1 04: 3 1 1 05: 2 3 1 1 06: 4 2 3 1 1 07: 2 5 3 3 1 1 08: 4 4 6 3 3 1 1 09: 3 6 6 7 3 3 1 1 10: 4 6 10 7 7 3 3 1 1 11: 2 9 10 12 8 7 3 3 1 1 12: 6 6 15 14 13 8 7 3 3 1 1 13: 2 11 15 20 16 14 8 7 3 3 1 1 14: 4 10 21 22 24 17 ... T(6,2)=3 because we have [4,1,1],[3,2,1] and [2,2,1,1].
Links
- Alois P. Heinz, Rows n = 1..142, flattened
- G. E. Andrews, M. Beck and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv:1406.3374 [math.NT], 2014.
- Bernard L. S. Lin, Saisai Zheng, k-regular partitions and overpartitions with bounded part differences, The Raman. J. 56 (2021) 685-695
Crossrefs
Programs
-
Maple
g:=sum(x^i/(1-x^i)/product(1-t*x^j,j=1..i-1),i=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 15 do P[n]:=coeff(gser,x^n) od: 1; for n from 2 to 15 do seq(coeff(P[n],t,j),j=0..n-2) od; # yields sequence in triangular form
-
Mathematica
rows = 15; max = rows + 2; col[k0_ /; k0 > 0] := col[k0] = Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; col[0] := Table[Switch[n, 1, 0, 2, 1, , n - 1 - col[1][[n]]], {n, 1, Length[col[1]]}]; Join[{1}, Table[ col[k][[n+2]], {n, 0, rows-1}, {k, 0, n-1}] // Flatten] (* _Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)
Formula
G.f.: sum(i>=1, x^i/(1-x^i)/prod(j=1..i-1, 1-t*x^j) ).
Comments