A116721 Number of permutations of length n which avoid the patterns 123, 3142, 4312; or avoid the patterns 123, 3421, 4231.
1, 2, 5, 12, 24, 42, 67, 100, 142, 194, 257, 332, 420, 522, 639, 772, 922, 1090, 1277, 1484, 1712, 1962, 2235, 2532, 2854, 3202, 3577, 3980, 4412, 4874, 5367, 5892, 6450, 7042, 7669, 8332, 9032, 9770, 10547, 11364, 12222, 13122, 14065, 15052, 16084, 17162
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Lara Pudwell, Systematic Studies in Pattern Avoidance, 2005.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
A116721 := proc(n) coeftayl(-x*(x^4-3*x^2+2*x-1)/(x-1)^4,x=0,n) ; end: seq(A116721(n),n=1..60) ; # R. J. Mathar, Jan 23 2008
-
PARI
Vec(x*(1 - 2*x + 3*x^2 - x^4) / (1 - x)^4 + O(x^100)) \\ Colin Barker, Oct 24 2017
Formula
G.f.: x*(1 - 2*x + 3*x^2 - x^4) / (1 - x)^4.
For n >= 2, a(n) = (n^3 + 3n^2 - 16n + 24)/6. - Franklin T. Adams-Watters, Sep 16 2006
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>5. - Colin Barker, Oct 24 2017
Extensions
More terms from R. J. Mathar, Jan 23 2008