cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116850 Number of permutations of length n which avoid the patterns 231, 12354.

Original entry on oeis.org

1, 2, 5, 14, 41, 119, 334, 902, 2351, 5945, 14660, 35408, 84061, 196715, 454778, 1040522, 2359451, 5308589, 11862208, 26345684, 58196201, 127926527, 279970070, 610271534, 1325400391, 2868904289, 6190793084, 13321109912, 28588376501, 61203284435, 130728067570
Offset: 1

Views

Author

Lara Pudwell, Feb 26 2006

Keywords

Comments

Inverse binomial transform (offset 0) is: 0, 1, 0, 2, 2, 6, 7, 12, 14, 20, 23, 30, 34, 42, 47, 56, 62, 72,.. with difference pattern +1, -1, +2, +0, +4, +1, +5, +2, +6, +3,... as in A168230. - R. J. Mathar, Feb 23 2013

Programs

  • PARI
    Vec(x*(1 - 7*x + 20*x^2 - 28*x^3 + 20*x^4 - 7*x^5) / ((1 - x)^3*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Oct 30 2017

Formula

G.f.: x*(1 - 7*x + 20*x^2 - 28*x^3 + 20*x^4 - 7*x^5) / ((1 - x)^3*(1 - 2*x)^3).
From Colin Barker, Oct 30 2017: (Start)
a(n) = (1/16)*(32-9*2^(1+n) + (8+2^n)*n + (8+2^n)*n^2).
a(n) = 9*a(n-1) - 33*a(n-2) + 63*a(n-3) - 66*a(n-4) + 36*a(n-5) - 8*a(n-6) for n>6.
(End)