A116852 Number of partitions of n-th semiprime into 2 squares.
1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1
Offset: 1
Examples
a(1) = 1 because semiprime(1) = 4 = 0^2 + 2^2, the unique sum of squares. a(2) = 0 because semiprime(2) = 6 has no decomposition into sum of 2 squares because it has a prime factor p == 3 (mod 4) with an odd power. a(3) = 1 because semiprime(3) = 9 = 0^2 + 3^2, the unique sum of squares. a(4) = 1 because semiprime(4) = 10 = 2*5 = 1^2 + 3^2. a(9) = 2 because semiprime(9) = 25 = 0^2 + 5^2 = 3^2 + 4^2, two distinct ways. a(23) = 2 because semiprime(23) = 65 = 5*13 = 1^2 + 8^2 = 4^2 + 7^2. a(28) = 2 because semiprime(28) = 85 = 5*17 = 2^2 + 9^2 = 6^2 + 7^2. a(49) = 2 because semiprime(49) = 145 = 5*29 = 1^2 + 12^2 = 8^2 + 9^2. a(56) = 2 because semiprime(56) = 169 = 0^2 + 13^2 = 5^2 + 12^2. a(60) = 2 because semiprime(60) = 185 = 5*37 = 4^2 + 13^2 = 8^2 + 11^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: for n from 4 while count < 100 do if numtheory:-bigomega(n) = 2 then count:= count+1; F:= ifactors(n)[2]; if nops(F) = 1 then if F[1][1] mod 4 = 1 then v:= 2 else v:= 1 fi elif F[1][1]=2 and F[2][1] mod 4 = 1 then v:= 1 elif F[1][1] mod 4 = 1 and F[2][1] mod 4 = 1 then v:= 2 else v:= 0 fi; R:= R, v; fi od: R; # Robert Israel, Jun 10 2020
Extensions
More terms from Giovanni Resta, Jun 15 2016
Comments