A116880 Generalized Catalan triangle, called CM(1,2).
1, 1, 3, 3, 7, 13, 13, 29, 41, 67, 67, 147, 195, 247, 381, 381, 829, 1069, 1277, 1545, 2307, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 95235, 205059, 255747, 290691, 320707, 351187, 388099, 446455, 636925
Offset: 0
Examples
Triangle begins: 1; 1, 3; 3, 7, 13; 13, 29, 41, 67; 67, 147, 195, 247, 381; 381, 829, 1069, 1277, 1545, 2307; 2307, 4995, 6339, 7379, 8451, 9975, 14589;
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..2500
- Wolfdieter Lang, First 10 rows.
Programs
-
Maple
lim:=8: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1, x, lim+1): for n from 0 to lim do a[n,m]:=coeff(t, x, n):od:od: gf2:=g*sum(a[s,k]*(2*c)^k,k=0..s): for s from 0 to lim do t:=taylor(gf2, x, lim+1): for n from 0 to lim do b[n,s]:=coeff(t, x, n):od:od: seq(seq(b[n-s,s],s=0..n),n=0..lim); # Nathaniel Johnston, Apr 30 2011
Comments