cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116880 Generalized Catalan triangle, called CM(1,2).

Original entry on oeis.org

1, 1, 3, 3, 7, 13, 13, 29, 41, 67, 67, 147, 195, 247, 381, 381, 829, 1069, 1277, 1545, 2307, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 95235, 205059, 255747, 290691, 320707, 351187, 388099, 446455, 636925
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Comments

This triangle generalizes the 'new' Catalan triangle A028364 (which could be called CM(1,1); M stands for author Meeussen).

Examples

			Triangle begins:
     1;
     1,    3;
     3,    7,   13;
    13,   29,   41,   67;
    67,  147,  195,  247,  381;
   381,  829, 1069, 1277, 1545, 2307;
  2307, 4995, 6339, 7379, 8451, 9975, 14589;
		

Crossrefs

Column m=0 gives A064062.
Row sums give A116881.

Programs

  • Maple
    lim:=8: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1, x, lim+1): for n from 0 to lim do a[n,m]:=coeff(t, x, n):od:od: gf2:=g*sum(a[s,k]*(2*c)^k,k=0..s): for s from 0 to lim do t:=taylor(gf2, x, lim+1): for n from 0 to lim do b[n,s]:=coeff(t, x, n):od:od: seq(seq(b[n-s,s],s=0..n),n=0..lim); # Nathaniel Johnston, Apr 30 2011

Formula

G.f. for columns m >= 0 (without leading zeros): c(2;x)*Sum_{k=0..m} C(1,2;m,k)*(2*c(2*x))^k with c(2;x):=(1+2*x*c(2*x))/(1+x) the g.f. of A064062 and c(x) is the g.f. of A000108 (Catalan). C(1,2;n,m) is the triangle A115193(n,m).