A116892 Values of gcd(k!+1, k^k+1), when greater than 1.
2, 7, 47, 79, 103, 127, 191, 199, 263, 367, 383, 431, 479, 503, 599, 607, 631, 727, 743, 823, 839, 863, 887, 991, 1087, 1151, 1319, 1367, 1423, 1487, 1511, 1583, 1663, 1783, 1823, 1871, 1951, 2039, 2063, 2111, 2143, 2287, 2311, 2383, 2423, 2447, 2503, 2551
Offset: 1
Examples
gcd(1!+1,1^1+1) = 2 gives the first term; gcd(3!+1,3^3+1) = gcd(7,28) = 7 gives the second, and so on.
Links
- Nick Hobson, Table of n, a(n) for n = 1..10000 (first 1832 terms from Antti Karttunen)
Programs
-
C
See Links section in A116893.
-
Mathematica
f[n_] := GCD[n! + 1, n^n + 1]; t = Array[f, 1295]; Rest@ Union@ t (* Robert G. Wilson v, Mar 09 2006 *)
-
PARI
lista(nn) = for (n=1, nn, if ((g=gcd(n! + 1, n^n + 1)) != 1, print1(g, ", "))); \\ Michel Marcus, Jul 22 2018
Extensions
Entries checked by Robert G. Wilson v, Mar 09 2006
Comments