cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116929 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts such that the sum of the parts, counted without multiplicities, is equal to k (n>=1, k>=1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 1, 0, 0, 2, 0, 1, 0, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 0, 3, 1, 1, 0, 1, 1, 2, 1, 0, 0, 3, 0, 2, 0, 2, 1, 1, 2, 1, 0, 1, 3, 0, 2, 0, 1, 2, 1, 1, 3, 1, 0, 0, 4, 0, 2, 0, 2, 2, 2, 1, 1, 3, 1, 0, 0, 4, 0, 2, 1, 2, 3, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Row sums yield A000009. T(n,n)=A000700(n). Sum(k*T(n,k),k=1..n)=A116930(n).

Examples

			T(10,4) = 3 because we have [3,3,3,1], [3,3,1,1,1,1] and [3,1,1,1,1,1,1,1].
Triangle starts:
1;
1,0;
1,0,1;
1,0,0,1;
1,0,0,1,1;
		

Crossrefs

Programs

  • Maple
    g:=-1+product(1+t^(2*j-1)*x^(2*j-1)/(1-x^(2*j-1)),j=1..40): gser:=simplify(series(g,x=0,20)): for n from 1 to 15 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-2)+add(x^i*b(n-i*j, i-2), j=1..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, iquo(n-1, 2)*2+1)):
    seq(T(n), n=1..14);  # Alois P. Heinz, May 14 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-2] + Sum[x^i*b[n-i*j, i-2], {j, 1, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, Quotient[n-1, 2]*2+1]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

G.f.: -1+product(1+t^(2j-1)*x^(2j-1)/(1-x^(2j-1)), j=1..infinity).