A116932 Number of partitions of n in which each part, with the possible exception of the largest, occurs at least three times.
1, 2, 2, 3, 3, 6, 6, 9, 12, 14, 16, 24, 25, 32, 40, 49, 56, 73, 81, 102, 120, 142, 162, 202, 227, 270, 316, 367, 419, 506, 565, 663, 767, 879, 998, 1179, 1317, 1517, 1739, 1979, 2232, 2588, 2883, 3295, 3742, 4220, 4737, 5426, 6037, 6828, 7701, 8642, 9651, 10939
Offset: 1
Keywords
Examples
a(5) = 3 because we have [5], [2,1,1,1] and [1,1,1,1,1].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Column k=3 of A218698. - Alois P. Heinz, Nov 04 2012
Programs
-
Maple
g:=sum(x^k*product(1+x^(3*j)/(1-x^j),j=1..k-1)/(1-x^k),k=1..70): gser:=series(g,x=0,62): seq(coeff(gser,x^n),n=1..58); # second Maple program b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +add(b(n-i*j, i-3), j=1..n/i))) end: a:= n-> b(n, n): seq(a(n), n=1..70); # Alois P. Heinz, Nov 04 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-3], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
Formula
G.f.: sum(x^k*product(1+x^(3j)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity). More generally, the g.f. of partitions of n in which each part, with the possible exception of the largest, occurs at least b times, is sum(x^k*product(1+x^(bj)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity). It is also the g.f. of partitions of n in which any two distinct parts differ by at least b.
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869... - Vaclav Kotesovec, Jan 28 2022
Comments