A116978 Cubes whose multiplicative digital root is also a cube.
0, 1, 8, 64, 125, 343, 512, 1000, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 13824, 15625, 17576, 19683, 21952, 27000, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507, 85184, 91125, 97336, 103823, 110592, 117649
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Multiplicative Digital Root.
Programs
-
Maple
A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A116978 := proc(n) option remember: local k,m: if(n=1)then return 0:fi: for k from procname(n-1)+1 do m:=k^3: while(length(m)>1)do m:=A007954(m): od: if(m in {0,1,8})then return k: fi: od: end: seq(A116978(n)^3, n=1..50); # Nathaniel Johnston, May 05 2011
-
Mathematica
fQ[n_] := IntegerQ[ FixedPoint[Times @@ IntegerDigits@# &, n]^(1/3)]; Select[Range[0, 48]^3, fQ@# &] (* Robert G. Wilson v, Apr 03 2006 *)
-
PARI
t(k)=while(k>9, k=prod(i=1, #k=digits(k), k[i])); k for(n=0, 200, if(ispower(t(n^3), 3), print1(n^3, ", "))); \\ Altug Alkan, Oct 22 2015
Formula
a(n) >= A052044(n)^3 for n > 3. - Charles R Greathouse IV, Nov 17 2015
Extensions
Corrected and extended by Robert G. Wilson v, Apr 03 2006
Comments