cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118719 Cubes for which the digital root is also a cube.

Original entry on oeis.org

0, 1, 8, 64, 125, 343, 512, 1000, 1331, 2197, 2744, 4096, 4913, 6859, 8000, 10648, 12167, 15625, 17576, 21952, 24389, 29791, 32768, 39304, 42875, 50653, 54872, 64000, 68921, 79507, 85184, 97336, 103823, 117649, 125000, 140608, 148877
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 21 2006

Keywords

Comments

All cubes have a digital root 1,8 or 9. (except for the number 0) So this sequence contains all cubes with a digital root which is not 9.
This sequence is 0 union A016779 union A016791.

Examples

			64 is in the sequence because (1) it is a cube and (2) the digital root 1 is also a cube.
		

Crossrefs

Programs

  • Magma
    [0] cat [(6*n+(-1)^n-9)^3 div 64: n in [2..37]];  // Bruno Berselli, May 05 2011
    
  • Mathematica
    Join[{0}, Table[(3*k + {1, 2})^3, {k, 0, 15}] // Flatten] (* Amiram Eldar, Dec 19 2020 *)
  • PARI
    a010888(n)=if(n, (n-1)%9+1)
    lista(nn) = {for (n=0, nn, if (ispower(a010888(n^3), 3), print1(n^3, ", ")););} \\ Michel Marcus, Feb 18 2015

Formula

a(n) = (floor(3*n/2)-2)^3 for n >= 2. - Nathaniel Johnston, May 05 2011
G.f.: x^2*(1+7*x+53*x^2+40*x^3+53*x^4+7*x^5+x^6)/((1+x)^3*(1-x)^4). a(n) = A001651(n-1)^3 for n>1. - Bruno Berselli, May 05 2011
Sum_{n>=2} 1/a(n) = 26*zeta(3)/27. - Amiram Eldar, Dec 19 2020

A117678 Squares for which the multiplicative digital root is also a square.

Original entry on oeis.org

0, 1, 4, 9, 25, 100, 169, 196, 225, 256, 400, 529, 576, 625, 676, 900, 961, 1024, 1089, 1156, 1225, 1296, 1521, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3481, 3600, 3844, 3969, 4096, 4225, 4356, 4489, 4900, 5041, 5184, 5329
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 12 2006

Keywords

Comments

From Robert Israel, Oct 22 2015: (Start)
1, 9, and squares in A034048 and A034051.
Are there infinitely many squares in A034051? (End)

Crossrefs

Programs

  • Maple
    A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A117678 := proc(n) option remember: local k, m: if(n=1)then return 0:fi: for k from procname(n-1)+1 do m:=k^2: while(length(m)>1)do m:=A007954(m): od: if(m in {0,1,4,9})then return k: fi: od: end: seq(A117678(n)^2, n=1..47); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Select[Range[0, 73]^2, IntegerQ@ Sqrt[FixedPoint[Times @@ IntegerDigits@ # &, #] &@ #] &] (* Michael De Vlieger, Oct 22 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    for(n=0, 100, if(issquare(t(n^2)), print1(n^2, ", "))); \\ Altug Alkan, Oct 22 2015

Extensions

Offset and some terms corrected by Nathaniel Johnston, May 05 2011
Showing 1-2 of 2 results.