A116996 Partial sums of A116966.
0, 1, 4, 6, 10, 15, 22, 28, 36, 45, 56, 66, 78, 91, 106, 120, 136, 153, 172, 190, 210, 231, 254, 276, 300, 325, 352, 378, 406, 435, 466, 496, 528, 561, 596, 630, 666, 703, 742, 780, 820, 861, 904, 946, 990, 1035, 1082, 1128, 1176, 1225
Offset: 0
Examples
a(1) = 1 = A000217(1). a(2) = 1+3 = 4 = A000217(2)+1. a(3) = 1+3+2 = 6 = A000217(3). a(4) = 1+3+2+4 = 10 = A000217(4). a(5) = 1+3+2+4+5 = 15 = A000217(5). a(6) = 1+3+2+4+5+7 = 22 = A000217(6)+1. a(27) = 1+3+2+4+5+7+6+8+9+11+10+12+13+15+14+16+17+19+18+20+21+23+22+24+25+27+26 = 378 = A000217(27).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
Mathematica
Series[(1+2*x-x^2+2*x^3)/(1-x-x^4+x^5), {x, 0, 48}] // CoefficientList[#, x]& // Accumulate // Prepend[#, 0]& (* Jean-François Alcover, Apr 30 2013 *)
-
PARI
concat([0],Vec(-x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1))+O(x^66))) \\ Joerg Arndt, Apr 30 2013
Formula
a(n) = SUM[i=1..n] A116966(n). a(n) = SUM[i=1..n] (n + {1,2,0,1} according as n == {0,1,2,3} mod 4). a(n) = A000217(n) = n*(n+1)/2 unless n == 2 mod 4 in which case a(n) = A000217(n)+1 = (n*(n+1)/2)+1.
G.f.: -x*(2*x^3-x^2+2*x+1) / ((x-1)^3*(x+1)*(x^2+1)). - Colin Barker, Apr 30 2013
Extensions
More terms from Colin Barker, Apr 30 2013