A117012 Primes of the form n^2+5*n+c (n>=0), where c=3 for even n and c=-3 for odd n.
3, 17, 47, 107, 173, 269, 503, 641, 809, 983, 1187, 1637, 2441, 2753, 4157, 4547, 4967, 5393, 5849, 6311, 6803, 7829, 8363, 9497, 11981, 12653, 13331, 14753, 15497, 17027, 22943, 26723, 29753, 31859, 32933, 38609, 39791, 42221, 47297, 49943, 58313
Offset: 1
References
- Harvey Cohn, Advanced Number Theory,Dover, New York, 1962, page 155.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(isprime, [seq(n^2 + 5*n + (-1)^n * 3, n=1..1000)]); # Robert Israel, Aug 25 2025
-
Mathematica
f[n_] := If[Mod[n, 2] == 1, n^2 + 5*n - 3, n^2 + 5*n + 3] b = Flatten[Table[If[PrimeQ[f[n]] == True, f[n], {}], {n, 1, 100}]]
-
PARI
for(n=1, 250, k=n^2+5*n+3-6*(n%2); if(isprime(k), print1(k,", ")))
Extensions
Edited and extended by N. J. A. Sloane, Apr 17 2006