cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117120 a(1)=1. a(n) is smallest positive integer not occurring earlier in the sequence where a(n) is congruent to -1 (mod a(n-1)).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 11, 10, 9, 8, 15, 14, 13, 12, 23, 22, 21, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 95, 94, 93, 92, 91, 90, 89, 88, 87
Offset: 1

Views

Author

Leroy Quet, Apr 19 2006

Keywords

Comments

Sequence is a permutation of the positive integers.
The permutation is self-inverse. Except for fixed points 1, 2, 3 it consists completely of 2-cycles: (4,5), (6,7), (8,11), (9,10), (12,15), (13,14), (16,23), (17,22), ..., (24,31), ..., (32,47), ... . - Klaus Brockhaus
The permutation transforms enumeration system of positive irreducible fractions A071766/A229742 (HCS) into enumeration system A245325/A245326, and vice versa. - Yosu Yurramendi, Jun 09 2015
A092569(a(n)) = a(A092569(n)), n > 0.
A258746(a(n)) = a(A258746(n)), n > 0.
A258996(a(n)) = a(A258996(n)), n > 0.
A054429(a(n)) = a(A054429(n)), n > 0.
a(n) = A054429(A063946(n)) = A063946(A054429(n)), n > 0. - Yosu Yurramendi, Mar 23 2017

Crossrefs

Programs

  • Maple
    A[1]:= 1: A[2]:= 2: B[1]:= 0: B[2]:= 0:
    for n from 3 to 100 do
      for m from A[n-1]-1 by A[n-1] while assigned(B[m]) do od:
      A[n]:= m;
      B[m]:= 0;
    od:
    seq(A[n],n=1..100); # Robert Israel, Jun 09 2015
  • Mathematica
    f[n_] := Block[{a = {1}, i, k}, Do[k = 1; While[Or[Mod[k, a[[i - 1]]] != a[[i - 1]] - 1, MemberQ[a, k]], k++]; AppendTo[a, k], {i, 2, n}]; a]; f@ 120 (* Michael De Vlieger, Jun 11 2015 *)
    A[n_]:= If[n<4, n, If[EvenQ[n], 2A[n/2] + 1, 2A[(n - 1)/2]]]; Table[A[n], {n, 100}] (* Indranil Ghosh, Mar 21 2017 *)
    f[lst_List] := Block[{k = 2, m = lst[[-1]]}, While[ MemberQ[lst, k] || 1 + Mod[k, m] != m, k++]; Append[lst, k]]; Nest[f, {1}, 70] (* Robert G. Wilson v, Jan 22 2018 *)
  • PARI
    A(n) = if(n<4, n, if(n%2, 2*A(n\2), 2*A(n/2)+1));
    for(n=1, 50, print1(A(n), ", ")) \\ Indranil Ghosh, Mar 21 2017
  • R
    a <- 1:3 # If it were c(1, 3, 2), it would be A054429
    maxn <- 50 # by choice
    #
    for(n in 2:maxn){
      a[2*n  ] <- 2*a[n]+1
      a[2*n+1] <- 2*a[n]
    }
    #
    a
    # Yosu Yurramendi, Jun 08 2015
    

Formula

For n >= 2: If a(n-1) = 2^m, m=positive integer, then a(n)= 2^(m+1)-1. If a(n-1) = 3*2^m, m= nonnegative integer, then a(n) = 3*2^(m+1)-1. Otherwise, a(n) = a(n-1) -1.
For n >= 2: a(2*n) = 2*a(n)+1, a(2*n+1) = 2*a(n). - Yosu Yurramendi, Jun 08 2015

Extensions

More terms from Klaus Brockhaus