A117134 Greatest k such that n^k divides (n^2)!.
3, 4, 7, 6, 17, 8, 21, 20, 24, 12, 70, 14, 32, 55, 63, 18, 80, 20, 99, 73, 48, 24, 191, 78, 56, 121, 130, 30, 224, 32, 204, 108, 72, 203, 323, 38, 80, 126, 398, 42, 293, 44, 193, 505, 96, 48, 575, 200, 312, 162, 225, 54, 485, 302, 522, 180, 120, 60, 898, 62, 128, 660, 682
Offset: 2
Examples
a(3)=4 because (3^2)! = 362880 = 3^4 * 4480 and 4480 is not divisible by 3.
References
- Thread "100!" in rec.puzzles newsgroup, April 2007
Links
- Robert Israel, Table of n, a(n) for n = 2..10000 (n=2..103 from Vincenzo Librandi)
Crossrefs
Cf. A011776.
Programs
-
Maple
seq(ordp((n^2)!,n), n=2..50); # Alternative: f:= proc(n) local F,m,t,v,j; F:= ifactors(n)[2]; m:= infinity; for t in F do v:= add(floor(n^2/t[1]^j),j=1..ceil(log[t[1]](n^2))); m:= min(m,floor(v/t[2])); od; m end proc: map(f, [$2..100]); # Robert Israel, Feb 26 2019
-
Mathematica
gkn[n_]:=Module[{c=(n^2)!,k},k=Floor[Log[c]/Log[n]]; While[!Divisible[ c,n^k], k--];k]; Array[gkn,70,2] (* Harvey P. Dale, Sep 14 2012 *)
Comments