cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117147 Triangle read by rows: T(n,k) is the number of partitions of n with k parts in which no part occurs more than 3 times (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 3, 4, 3, 1, 1, 4, 5, 4, 2, 1, 4, 7, 6, 3, 1, 1, 5, 8, 9, 5, 1, 1, 5, 10, 11, 8, 3, 1, 6, 12, 14, 11, 5, 1, 1, 6, 14, 18, 15, 8, 2, 1, 7, 16, 23, 20, 11, 4, 1, 7, 19, 27, 27, 17, 6, 1, 1, 8, 21, 33, 34, 23, 10, 2, 1, 8, 24, 39, 43, 32, 15, 4, 1, 9
Offset: 1

Views

Author

Emeric Deutsch, Mar 07 2006

Keywords

Comments

Row n has floor(sqrt(6n+6)-3/2) terms. Row sums yield A001935. Sum(k*T(n,k),k>=0) = A117148(n).

Examples

			T(7,3) = 4 because we have [5,1,1], [4,2,1], [3,3,1] and [3,2,2].
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 2, 1;
1, 2, 2, 1;
1, 3, 3, 2;
1, 3, 4, 3, 1;
		

Crossrefs

Programs

  • Maple
    g:=-1+product(1+t*x^j+t^2*x^(2*j)+t^3*x^(3*j),j=1..35): gser:=simplify(series(g,x=0,23)): for n from 1 to 18 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 18 do seq(coeff(P[n],t^j),j=1..floor(sqrt(6*n+6)-3/2)) od; # yields sequence in triangular form
    # second Maple program
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else []; for j from 0 to min(3, n/i) do
          zip((x, y)->x+y, %, [0$j, b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> subsop(1=NULL, [b(n, n)])[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, Jan 08 2013
  • Mathematica
    max = 18; g = -1+Product[1+t*x^j+t^2*x^(2j)+t^3*x^(3j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; Table[DeleteCases[Table[t[n, k], {k, 1, n}], 0], {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

Formula

G.f.: G(t,x) = -1+product(1+tx^j+t^2*x^(2j)+t^3*x^(3j), j=1..infinity).