cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117148 Number of parts in all partitions of n in which no part occurs more than 3 times.

Original entry on oeis.org

1, 3, 6, 8, 15, 24, 36, 50, 75, 102, 143, 197, 264, 349, 467, 606, 789, 1016, 1299, 1656, 2100, 2634, 3302, 4117, 5106, 6306, 7772, 9523, 11639, 14185, 17216, 20839, 25166, 30280, 36361, 43551, 52022, 62004, 73753, 87510, 103638, 122507, 144496, 170133
Offset: 1

Views

Author

Emeric Deutsch, Mar 07 2006

Keywords

Comments

a(n) = sum(A117147(n,k), k>=1).

Examples

			a(4) = 8 because the partitions of 4 in which no part occurs more than 3 times are [4], [3,1], [2,2] and [2,1,1] ([1,1,1,1] does not qualify) with a total of 1+2+2+3=8 parts.
		

Crossrefs

Column k=3 of A210485. - Alois P. Heinz, Jan 23 2013

Programs

  • Maple
    g:=product(1+x^j+x^(2*j)+x^(3*j),j=1..55) *sum((x^j+2*x^(2*j)+3*x^(3*j))/ (1+x^j+x^(2*j)+x^(3*j)), j=1..55): gser:=series(g,x=0,53): seq(coeff(gser,x^n),n=1..50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 3))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jan 08 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{l}, {l[[1]], l[[2]] + l[[1]]*j}][b[n-i*j, i-1]], {j, 0, Min[n/i, 3]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)

Formula

G.f.: product(1+x^j+x^(2j)+x^(3j), j=1..infinity) * sum((x^j+2x^(2j)+3x^(3j)) / (1+x^j+x^(2j)+x^(3j)), j=1..infinity).
a(n) ~ log(2) * exp(Pi*sqrt(n/2)) / (Pi * 2^(1/4) * n^(1/4)). - Vaclav Kotesovec, May 27 2018