A117165 Triangle of coefficients for the Shift-Moebius transform, read by rows.
1, -1, 1, -2, 0, 1, -1, -1, 0, 1, -2, -1, 0, 0, 1, 1, -2, -1, 0, 0, 1, -1, -1, -1, 0, 0, 0, 1, 3, -2, -1, -1, 0, 0, 0, 1, 0, 0, -2, -1, 0, 0, 0, 0, 1, 4, -2, -1, -1, -1, 0, 0, 0, 0, 1, 4, 0, -2, -1, -1, 0, 0, 0, 0, 0, 1, 5, 1, -1, -2, -1, -1, 0, 0, 0, 0, 0, 1, 1, 2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 7, 0, 0, -2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1; -1, 1; -2, 0, 1; -1,-1, 0, 1; -2,-1, 0, 0, 1; 1,-2,-1, 0, 0, 1; -1,-1,-1, 0, 0, 0, 1; 3,-2,-1,-1, 0, 0, 0, 1; 0, 0,-2,-1, 0, 0, 0, 0, 1; 4,-2,-1,-1,-1, 0, 0, 0, 0, 1; 4, 0,-2,-1,-1, 0, 0, 0, 0, 0, 1; 5, 1,-1,-2,-1,-1, 0, 0, 0, 0, 0, 1; 1, 2,-1,-1,-1,-1, 0, 0, 0, 0, 0, 0, 1; 7, 0, 0,-2,-1,-1,-1, 0, 0, 0, 0, 0, 0, 1; 6, 3,-2,-1,-2,-1,-1, 0, 0, 0, 0, 0, 0, 0, 1; 5, 3, 1,-2,-1,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=if(n
=c,if((r+n-i)%(c+n-i)==0,moebius((r+n-i)/(c+n-i)),0))))[ n,k])}
Formula
The Shift-Moebius transform of a sequence B is equal to the limit of the iteration: let C_1 = B and for k>1, C_{k+1} = Moebius transform of C_k preceded by k zeros, then shift left k places (to drop the leading k zeros).
Comments