cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117207 Number triangle read by rows: T(n,k) = Sum_{j=0..n-k} C(n+j,j+k)*C(n-j,k).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 35, 31, 13, 1, 126, 121, 81, 21, 1, 462, 456, 381, 181, 31, 1, 1716, 1709, 1583, 1058, 358, 43, 1, 6435, 6427, 6231, 5055, 2605, 645, 57, 1, 24310, 24301, 24013, 21661, 14605, 5785, 1081, 73, 1, 92378, 92368, 91963, 87643, 70003, 38251, 11791
Offset: 0

Views

Author

Paul Barry, Mar 02 2006

Keywords

Comments

Row sums are A037965(n+1).
Second column is A048775. - Paul Barry, Oct 01 2010
First column is A001700. - Dan Uznanski, Jan 23 2012
The number of different ordered partitions of n+1 into n+1 bins (as with A001700), such that more than k bins are nonempty. - Dan Uznanski, Jan 23 2012
Second diagonal is A002061. - Franklin T. Adams-Watters, Jan 24 2012

Examples

			Triangle begins:
     1,
     3,    1,
    10,    7,    1,
    35,   31,   13,    1,
   126,  121,   81,   21,   1,
   462,  456,  381,  181,  31,  1,
  1716, 1709, 1583, 1058, 358, 43, 1
		

Programs

  • Mathematica
    Table[Sum[Binomial[n+j,j+k]Binomial[n-j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Apr 23 2016 *)
  • PARI
    T(n,k)=sum(j=0,n-k, binomial(n+j,j+k)*binomial(n-j,k))
    T(n,k)=binomial(2*n+1,n+1)-(n+1)*sum(j=1,k, binomial(n,j-1)^2/j)
    A117207(k)=my(n=sqrtint(2*k-sqrtint(2*k))); T(n,k-n*(n+1)/2) \\ M. F. Hasler, Jan 25 2012

Formula

T(n,k) = C(2*n+1,n+1) - (n+1)*Sum_{j=1..k} (Product_{i=0..j-2} (n-i)^2)/((j-1)!*j!).
T(n,k) = [x^(n-k)](1+x)^(n-k)*F(-n-1,-n,1,x/(1+x)). - Paul Barry, Oct 01 2010
T(n,k) = C(2*n+1,n+1) - (n+1)*Sum_{j=1..k} C(n,j-1)^2/j. - M. F. Hasler, Jan 25 2012