A117213 a(n) = smallest term of sequence A002110 divisible by n-th squarefree positive integer.
1, 2, 6, 30, 6, 210, 30, 2310, 30030, 210, 30, 510510, 9699690, 210, 2310, 223092870, 30030, 6469693230, 30, 200560490130, 2310, 510510, 210, 7420738134810, 9699690, 30030, 304250263527210, 210, 13082761331670030, 223092870
Offset: 1
Keywords
Examples
10 is the 7th squarefree integer. And 2*3*5 = 30 is the smallest primorial number divisible by 10 = 2*5. So a(7) = 30.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1441
Programs
-
Maple
issquarefree := proc(n::integer) local nf, ifa, lar ; nf := op(2,ifactors(n)) ; for ifa from 1 to nops(nf) do lar := op(1,op(ifa,nf)) ; if op(2,op(ifa,nf)) >= 2 then RETURN(0) ; fi ; od : RETURN(lar) ; end: primor := proc(n::integer) local resul, nepr ; resul :=2 ; nepr :=3 ; while nepr <= n do resul := resul*nepr ; nepr:=nextprime(nepr) ; od : RETURN(resul) ; end: printf("1,") ; for n from 2 to 100 do lfa := issquarefree(n) ; if lfa > 0 then printf("%a,",primor(lfa) ) ; fi ; od : # R. J. Mathar, Apr 02 2006
-
Mathematica
Select[Array[Which[# == 1, 1, SquareFreeQ@ #, Product[Prime@ i, {i, PrimePi@ FactorInteger[#][[-1, 1]]}], True, 0] &, 50], # > 0 & ] (* Michael De Vlieger, Sep 30 2017 *)
Formula
For n >= 2, a(n) = product of the primes <= A073482(n).
Extensions
More terms from R. J. Mathar, Apr 02 2006