A117228 Palindromes which are divisible by the product and by the sum of their digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 111, 2112, 4224, 13131, 21112, 21312, 31113, 42624, 211112, 234432, 1113111, 2111112, 2114112, 2118112, 21122112, 61111116, 111111111, 211121112, 211242112, 211262112, 213141312, 2111111112, 2112332112, 2114114112, 2131221312
Offset: 1
Examples
42624 is divisible by 4*2*6*2*4 and by 4+2+6+2+4.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..91
Programs
-
PARI
rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r) for(n=1,10^7,d=digits(n);if(rev(n)==n,p=prod(i=1,#d,d[i]);if(p&&n%p==0&&n%sumdigits(n)==0,print1(n,", ")))) \\ Derek Orr, Aug 25 2014
-
Python
from operator import mul from functools import reduce from gmpy2 import t_mod, mpz A117228 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1, 10**8)) if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n))) or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]+ [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**8)) if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n))) or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]) # Chai Wah Wu, Aug 25 2014
Extensions
More terms from Chai Wah Wu, Aug 22 2014
Comments