A117250 Triangle T, read by rows, where matrix power T^2 has powers of 2 in the secondary diagonal: [T^2](n+1,n) = 2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, -1, 2, 1, 4, -4, 4, 1, -40, 32, -16, 8, 1, 896, -640, 256, -64, 16, 1, -43008, 28672, -10240, 2048, -256, 32, 1, 4325376, -2752512, 917504, -163840, 16384, -1024, 64, 1, -899678208, 553648128, -176160768, 29360128, -2621440, 131072, -4096, 128, 1
Offset: 0
Examples
Triangle T begins: 1; 1,1; -1,2,1; 4,-4,4,1; -40,32,-16,8,1; 896,-640,256,-64,16,1; -43008,28672,-10240,2048,-256,32,1; 4325376,-2752512,917504,-163840,16384,-1024,64,1; -899678208,553648128,-176160768,29360128,-2621440,131072,-4096,128,1; Matrix square T^2 has powers of 2 in the 2nd diagonal: 1; 2,1; 0,4,1; 0,0,8,1; 0,0,0,16,1; 0,0,0,0,32,1; 0,0,0,0,0,64,1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = A117251(n-k)*2^((n-k)*k). T(n,k) = [prod_{j=0..n-k-1}(1-2*j)]/(n-k)!*2^(n*(n-1)/2 - k*(k-1)/2) for n>k>=0, with T(n,n) = 1.
Comments