A117252 Triangle T, read by rows, where matrix power T^3 has powers of 3 in the secondary diagonal: [T^3](n+1,n) = 3^(n+1), with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, -3, 3, 1, 45, -27, 9, 1, -2430, 1215, -243, 27, 1, 433026, -196830, 32805, -2187, 81, 1, -245525742, 105225318, -15943230, 885735, -19683, 243, 1, 434685788658, -178988265918, 25569752274, -1291401630, 23914845, -177147, 729, 1
Offset: 0
Examples
Triangle T begins: 1; 1,1; -3,3,1; 45,-27,9,1; -2430,1215,-243,27,1; 433026,-196830,32805,-2187,81,1; -245525742,105225318,-15943230,885735,-19683,243,1; 434685788658,-178988265918,25569752274,-1291401630,23914845,-177147,729,1; Matrix cube T^3 has powers of 3 in the 2nd diagonal: 1; 3,1; 0,9,1; 0,0,27,1; 0,0,0,81,1; 0,0,0,0,243,1; 0,0,0,0,0,729,1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=3,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = A117253(n-k)*3^((n-k)*k). T(n,k) = [prod_{j=0..n-k-1}(1-3*j)]/(n-k)!*3^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1.
Comments