A117254 Triangle T, read by rows, where matrix power T^4 has powers of 4 in the secondary diagonal: [T^4](n+1,n) = 4^(n+1), with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, -6, 4, 1, 224, -96, 16, 1, -39424, 14336, -1536, 64, 1, 30277632, -10092544, 917504, -24576, 256, 1, -98180268032, 31004295168, -2583691264, 58720256, -393216, 1024, 1, 1321338098679808, -402146377859072, 31748398252032, -661424963584, 3758096384, -6291456, 4096, 1
Offset: 0
Examples
Triangle T begins: 1; 1,1; -6,4,1; 224,-96,16,1; -39424,14336,-1536,64,1; 30277632,-10092544,917504,-24576,256,1; -98180268032,31004295168,-2583691264,58720256,-393216,1024,1; ... Matrix power T^4 has powers of 4 in the 2nd diagonal: 1; 4,1; 0,16,1; 0,0,64,1; 0,0,0,256,1; 0,0,0,0,1024,1; 0,0,0,0,0,4096,1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=4,q=4,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = A117255(n-k)*4^((n-k)*k). T(n,k) = (-1)^(n-k)*4^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(4*j-1) for n>k>=0, with T(n,n) = 1.
Comments