A117258 Triangle T, read by rows, where matrix power T^2 has 2*4^n in the secondary diagonal: [T^2](n+1,n) = 2*4^n, with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, -2, 4, 1, 32, -32, 16, 1, -2560, 2048, -512, 64, 1, 917504, -655360, 131072, -8192, 256, 1, -1409286144, 939524096, -167772160, 8388608, -131072, 1024, 1, 9070970929152, -5772436045824, 962072674304, -42949672960, 536870912, -2097152, 4096, 1
Offset: 0
Examples
Triangle T begins: 1; 1,1; -2,4,1; 32,-32,16,1; -2560,2048,-512,64,1; 917504,-655360,131072,-8192,256,1; -1409286144,939524096,-167772160,8388608,-131072,1024,1; Matrix square T^2 has 2*4^n in the 2nd diagonal: 1, 2,1, 0,8,1, 0,0,32,1, 0,0,0,128,1, 0,0,0,0,512,1, ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=2,q=4,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = A117259(n-k)*4^((n-k)*k). T(n,k) = (-1)^(n-k)*4^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(2*j-1) for n>k>=0, with T(n,n) = 1.
Comments