A117265 Triangle T, read by rows, where matrix power T^-2 has -2^(n+1) in the secondary diagonal: [T^-2](n+1,n) = -2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, 3, 2, 1, 20, 12, 4, 1, 280, 160, 48, 8, 1, 8064, 4480, 1280, 192, 16, 1, 473088, 258048, 71680, 10240, 768, 32, 1, 56229888, 30277632, 8257536, 1146880, 81920, 3072, 64, 1, 13495173120, 7197425664, 1937768448, 264241152, 18350080, 655360
Offset: 0
Examples
Triangle T begins: 1; 1,1; 3,2,1; 20,12,4,1; 280,160,48,8,1; 8064,4480,1280,192,16,1; 473088,258048,71680,10240,768,32,1; 56229888,30277632,8257536,1146880,81920,3072,64,1; 13495173120,7197425664,1937768448,264241152,18350080,655360,12288,128,1; Matrix inverse square T^-2 has -2^(n+1) in the 2nd diagonal: 1; -2,1; 0,-4,1; 0,0,-8,1; 0,0,0,-16,1; 0,0,0,0,-32,1; 0,0,0,0,0,-64,1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=-2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = A086229(n-k)*2^((n-k)*k). T(n,k) = 2^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(2*j+1) for n>k>=0, with T(n,n) = 1.
Comments