cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117276 Number of 1's in all partitions of n with no even parts repeated.

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 17, 26, 38, 54, 76, 105, 143, 193, 257, 339, 444, 576, 742, 950, 1208, 1528, 1923, 2407, 2999, 3721, 4597, 5657, 6937, 8476, 10322, 12532, 15168, 18306, 22034, 26450, 31672, 37835, 45091, 53619, 63625, 75341, 89037, 105023, 123647
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

a(n)=Sum(k*A117274(n,k),k=0..n).

Examples

			a(5)=11 because the partitions of 5 with no even parts repeated are [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] and they have a total number 0+1+0+2+3+5=11 parts equal to 1.
		

Crossrefs

Programs

  • Maple
    g:=x*product((1+x^(2*j))/(1-x^(2*j-1)),j=1..35)/(1-x): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..47);
  • Mathematica
    nmax = 50; CoefficientList[Series[x/(1-x) * Product[(1+x^(2*k))/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: x*product((1+x^(2j))/(1-x^(2j-1)), j=1..infinity)/(1-x).
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(5/4)*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
G.f.: (x/(1 - x))*Product_{k>=1} (1 - x^(4*k))/(1 - x^k). - Ilya Gutkovskiy, May 15 2018